Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
2.
Sci Rep ; 11(1): 4172, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33603056

ABSTRACT

Binding of tumour necrosis factor α (TNFα) to its receptor (TNFR1) is critical for both survival and death cellular pathways. TNFα/TNFR1 signalling is complex and tightly regulated at different levels to control cell fate decisions. Previously, we identified TNFR1-d2, an exon 2-spliced transcript of TNFRSF1A gene encoding TNFR1, whose splicing may be modulated by polymorphisms associated with inflammatory disorders. Here, we investigated the impact of TNFRSF1A variants involved in TNFR-associated periodic syndrome (TRAPS) on TNFR1-d2 protein expression and activity. We found that TNFR1-d2 could be translated by using an internal translation initiation codon and a de novo internal ribosome entry site (IRES), which resulted in a putative TNFR1 isoform lacking its N-terminal region. The kinetic of assembly of TNFR1-d2 clusters at the cell surface was reduced as compared with full-length TNFR1. Although co-localized with the full-length TNFR1, TNFR1-d2 neither activated nuclear factor (NF)-κB signalling, nor interfered with TNFR1-induced NF-κB activation. Translation of TNFR1-d2 carrying the severe p.(Thr79Met) pathogenic variant (also known as T50M) was initiated at the mutated codon, resulting in an elongated extracellular domain, increased speed to form preassembled clusters in absence of TNFα, and constitutive NF-κB activation. Overall, TNFR1-d2 might reflect the complexity of the TNFR1 signalling pathways and could be involved in TRAPS pathophysiology of patients carrying the p.(Thr79Met) disease-causing variant.


Subject(s)
Hereditary Autoinflammatory Diseases/genetics , Hereditary Autoinflammatory Diseases/pathology , Mutation/genetics , Receptors, Tumor Necrosis Factor, Type I/genetics , Signal Transduction/genetics , Tumor Necrosis Factor-alpha/genetics , Cell Line , Cell Line, Tumor , Exons/genetics , HEK293 Cells , HeLa Cells , Humans , NF-kappa B/genetics
4.
Mol Genet Genomic Med ; 5(2): 110-116, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28361096

ABSTRACT

BACKGROUND: TNF receptor-associated syndrome (TRAPS) is a dominantly inherited autoinflammatory condition caused by mutations in the TNFRSF1A gene. The mechanism underlying the variable expressivity of the common variant R92Q (rs4149584; c.362G>A; p.Arg121Gln) is unclear and is of critical importance for patient care and genetic counseling. This study evaluated the impact of the number of R92Q mutations in two unique unrelated families. METHODS: Two patients with undefined but clear autoinflammatory symptoms were referred for genetic diagnosis. Blood samples were collected from the available family members to screen autoinflammatory genes and assess key steps of the TNFR1-mediated signaling pathway using flow cytometry and ex vivo culture. RESULTS: R92Q homozygosity was demonstrated for the two probands. In family 1, the segregation analysis revealed TRAPS-like symptoms in all carriers, with a more severe presentation in the proband, whereas in family 2, the heterozygous parents were totally asymptomatic, suggesting recessive transmission. Functional studies revealed a nonclassical pathogenesis of TRAPS in the two probands and suggested a compensatory mechanism without clear dose effect. CONCLUSION: We observed for the first time a possible clinical dose effect of R92Q. This work highlights the importance of familial studies to reconcile the contradictory reports published on the pathogenicity of this variant.

5.
Ann Rheum Dis ; 76(7): 1191-1198, 2017 Jul.
Article in English | MEDLINE | ID: mdl-27965258

ABSTRACT

OBJECTIVES: Inflammasomes are multiprotein complexes that sense pathogens and trigger biological mechanisms to control infection. Nucleotide-binding oligomerisation domain-like receptor (NLR) containing a PYRIN domain 1 (NLRP1), NLRP3 and NLRC4 plays a key role in this innate immune system by directly assembling in inflammasomes and regulating inflammation. Mutations in NLRP3 and NLRC4 are linked to hereditary autoinflammatory diseases, whereas polymorphisms in NLRP1 are associated with autoimmune disorders such as vitiligo and rheumatoid arthritis. Whether human NLRP1 mutation is associated with autoinflammation remains to be determined. METHODS: To search for novel genes involved in systemic juvenile idiopathic arthritis, we performed homozygosity mapping and exome sequencing to identify causative genes. Immunoassays were performed with blood samples from patients. RESULTS: We identified a novel disease in three patients from two unrelated families presenting diffuse skin dyskeratosis, autoinflammation, autoimmunity, arthritis and high transitional B-cell level. Molecular screening revealed a non-synonymous homozygous mutation in NLRP1 (c.2176C>T; p.Arg726Trp) in two cousins born of related parents originating from Algeria and a de novo heterozygous mutation (c.3641C>G, p.Pro1214Arg) in a girl of Dutch origin. The three patients showed elevated systemic levels of caspase-1 and interleukin 18, which suggested involvement of NLRP1 inflammasome. CONCLUSIONS: We demonstrate the responsibility of human NLRP1 in a novel autoinflammatory disorder that we propose to call NAIAD for NLRP1-associated autoinflammation with arthritis and dyskeratosis. This disease could be a novel autoimmuno-inflammatory disease combining autoinflammatory and autoimmune features. Our data, combined with that in the literature, highlight the pleomorphic role of NLRP1 in inflammation and immunity. TRIAL REGISTRATION NUMBER: NCT02067962; Results.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Apoptosis Regulatory Proteins/genetics , Arthritis, Juvenile/genetics , Autoimmune Diseases/genetics , Hereditary Autoinflammatory Diseases/genetics , Skin Diseases/genetics , Adolescent , Algeria , Arthritis, Juvenile/complications , Arthritis, Juvenile/immunology , Autoimmune Diseases/complications , Autoimmune Diseases/immunology , B-Lymphocytes/immunology , Black People , Caspase 1/immunology , Child , Consanguinity , Female , Hereditary Autoinflammatory Diseases/complications , Hereditary Autoinflammatory Diseases/immunology , Homozygote , Humans , Interleukin-18/immunology , Male , Mutation , NLR Proteins , Netherlands , Precursor Cells, B-Lymphoid/immunology , Skin Diseases/complications , Skin Diseases/immunology , Syndrome , White People
6.
Expert Rev Clin Immunol ; 11(7): 827-35, 2015.
Article in English | MEDLINE | ID: mdl-25979514

ABSTRACT

Cryopyrin-associated periodic syndrome are rare autosomal dominantly inherited diseases. They include three overlapping phenotypes: familial cold autoinflammatory syndrome, Muckle-Wells syndrome, and chronic infantile neurological cutaneous articular syndrome/neonatal onset multisystem autoinflammatory syndrome (NOMID/CINCA). Recurrent fevers, joint pain, and urticarial skin rash are the main clinical features of these conditions. Renal amyloidosis and sensorineural complications may occur. Gain-of-function mutations in NLRP3 gene are responsible for the overactivation of the NLRP3 inflammasome, a multimolecular complex involved in the inflammatory process. Missense mutations are almost always encountered, particularly in exon 3, which encodes the nucleotide-binding domain. Mosaicism is not rare, especially in CINCA/NOMID. Next-generation sequencing will grant access to new insights about NLRP3 implication in oligogenic and multifactorial diseases.


Subject(s)
Carrier Proteins , Cryopyrin-Associated Periodic Syndromes , Inflammasomes , Mosaicism , Mutation , Animals , Carrier Proteins/genetics , Carrier Proteins/immunology , Cryopyrin-Associated Periodic Syndromes/diagnosis , Cryopyrin-Associated Periodic Syndromes/genetics , Cryopyrin-Associated Periodic Syndromes/immunology , Humans , Inflammasomes/genetics , Inflammasomes/immunology , NLR Family, Pyrin Domain-Containing 3 Protein
7.
Ann Rheum Dis ; 73(1): 290-7, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23505244

ABSTRACT

BACKGROUND: Mutations in the TNFRSF1A gene encoding the tumour necrosis factor α cell surface receptor, TNFR1, cause TNFR-associated periodic syndrome (TRAPS) and polymorphisms in TNFRSF1A, including rs4149570, rs767455 and rs1800692, are associated with inflammatory diseases. OBJECTIVES: To describe a new exon 2-spliced transcript-TNFR1-d2-and the impact of these three single nucleotide polymorphisms on exon 2 splicing, transcriptional activity of TNFRSF1A and TRAPS phenotype. METHODS: Expression of TNFRSF1A transcripts was performed by reverse-transcription-PCR in a range of human cells and tissues. Exon 2 splicing and transcriptional activity were analysed in HEK293T and SW480 cells by in vitro alternative splicing and luciferase assays, respectively. We constructed haplotypes containing rs4149570, rs767455 and rs1800692 in controls (n=72), patients with TRAPS (n=111) and in TRAPS-like patients (n=450) to compare their distribution and association with clinical features of TRAPS. RESULTS: TNFR1-d2 was expressed in a tissue-specific manner, whereas TNFR1 expression was ubiquitous. Alternative splicing assays showed that the T-A-T haplotype at rs4149570-rs767455-rs1800692 had a significantly higher expression of exon 2-skipping product (p=0.02) compared with the G-G-C haplotype. Transcriptional activity from the T-T haplotype at rs4149570-rs1800692 was increased compared with the G-C haplotype (p=0.03). In patients with TRAPS, rs1800692 T/T homozygotes were excessively rare (p<10(-4)) and TRAPS-like patients with this genotype experienced less fever. CONCLUSIONS: Our study provides a new mechanism of TNFRSF1A regulation whereby three polymorphisms in the promoter, exon 1 and intron 4 have a functional and combined effect on exon 2 splicing, via a coupling mechanism between transcription and splicing. These polymorphisms may affect the phenotype of TRAPS and TRAPS-like patients.


Subject(s)
Gene Expression Regulation/genetics , Hereditary Autoinflammatory Diseases/genetics , Polymorphism, Genetic , Receptors, Tumor Necrosis Factor, Type I/genetics , Adenocarcinoma , Alternative Splicing/genetics , Colonic Neoplasms , Exons/genetics , Fever , Genetic Complementation Test , HEK293 Cells , Haplotypes , Humans , Introns/genetics , Phenotype , Promoter Regions, Genetic/genetics
8.
Hum Mol Genet ; 18(24): 4746-55, 2009 Dec 15.
Article in English | MEDLINE | ID: mdl-19755381

ABSTRACT

Mutations in the MEditerranean FeVer (MEFV) gene are responsible for familial Mediterranean fever (FMF), a recessively inherited auto-inflammatory disease. Cases of dominant inheritance and phenotype-genotype heterogeneity have been reported; however, the underlying molecular mechanism is not currently understood. The FMF protein named pyrin or marenostrin (P/M) is thought to be involved in regulating innate immunity but its function remains subject to controversy. Recent studies postulate that a defect in MEFV expression regulation may play a role in FMF physiopathology. Our group, along with others, has identified several alternatively spliced MEFV transcripts in leukocytes. Since alternative splicing and nonsense-mediated decay (NMD) pathways are usually coupled in the post-transcriptional regulation of gene expression, we hypothesized that NMD could contribute to the regulation of the MEFV gene. To address this issue, we examined the effect of indirect and direct inhibition of NMD on expression of the MEFV transcripts in THP1, monocyte and neutrophil cells. We showed that MEFV is the first auto-inflammatory gene regulated by NMD in both a cell- and transcript-specific manner. These results and preliminary western-blot analyses suggest the possible translation of alternatively spliced MEFV transcripts into several P/M variants according to cell type and inflammatory state. Our results introduce the novel hypothesis that variation of NMD efficiency could play an important role in FMF physiopathology as a potent phenotypic modifier.


Subject(s)
Cytoskeletal Proteins/genetics , Familial Mediterranean Fever/genetics , Gene Expression Regulation , RNA Stability , Alternative Splicing , Codon, Nonsense/genetics , Exons/genetics , Humans , Molecular Sequence Data , Protein Biosynthesis/genetics , Pyrin , Transcription, Genetic
9.
Eur J Hum Genet ; 16(11): 1404-6, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18648395

ABSTRACT

Familial mediterranean fever (FMF) is a hereditary autoinflammatory autosomal recessive disease caused by mutations in the MEFV gene. Despite the identification of many disease associated MEFV mutations, often the clinical diagnosis cannot be genetically confirmed. The currently used diagnostic sequencing techniques only allow the detection of point mutations, small deletions or duplications. The question as to whether larger genetic alterations are also involved in the pathophysiology of FMF remains to be answered. To address this question, we used multiplex ligation-dependent probe amplification (MLPA) on a total of 216 patients with FMF symptoms. This careful analysis revealed that not a single deletion/duplication could be detected in this large cohort of patients. This result suggests that single or multiexon MEFV gene copy number changes do not contribute substantially, if at all, to the MEFV mutation spectrum.


Subject(s)
Cytoskeletal Proteins/genetics , Familial Mediterranean Fever/genetics , Ligase Chain Reaction , Point Mutation , Cohort Studies , Female , Humans , Male , Pyrin
10.
Nucleic Acids Res ; 33(11): 3582-90, 2005.
Article in English | MEDLINE | ID: mdl-15987790

ABSTRACT

In Saccharomyces cerevisiae, RNA polymerase II assembly is probably initiated by the formation of the RPB3-RPB11 heterodimer. RPB3 is encoded by a single copy gene in the yeast, mouse and human genomes. The RPB11 gene is also unique in yeast and mouse, but in humans a gene family has been identified that potentially encodes several RPB11 proteins differing mainly in their C-terminal regions. We compared the abilities of both yeast and human proteins to heterodimerize. We show that the yeast RPB3/RPB11 heterodimer critically depends on the presence of the C-terminal region of RPB11. In contrast, the human heterodimer tolerates significant changes in RPB11 C-terminus, allowing two human RPB11 variants to heterodimerize with the same efficiency with RPB3. In keeping with this observation, the interactions between the conserved N-terminal 'alpha-motifs' is much more important for heterodimerization of the human subunits than for those in yeast. These data indicate that the heterodimerization interfaces have been modified during the course of evolution to allow a recent diversification of the human RPB11 subunits that remains compatible with heterodimerization with RPB3.


Subject(s)
RNA Polymerase II/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Amino Acid Motifs , Amino Acid Sequence , Cell Proliferation , Conserved Sequence , Dimerization , Humans , Molecular Sequence Data , Mutation , Protein Structure, Tertiary , Protein Subunits/chemistry , Protein Subunits/metabolism , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Two-Hybrid System Techniques
11.
Am J Pharmacogenomics ; 4(2): 109-18, 2004.
Article in English | MEDLINE | ID: mdl-15059033

ABSTRACT

Autoinflammatory diseases are defined as illnesses caused by primary dysfunction of the innate immune system. This new concept includes a broad number of disorders, but the spotlight has been focused for the past two years on periodic fevers (familial Mediterranean fever [FMF]; mevalonate kinase deficiency [MVK]; tumor necrosis factor [TNF] receptor-associated periodic syndrome [TRAPS]; cryopyrin-associated periodic syndrome [CAPS]), Crohn's disease and Blau syndrome, thanks to the recent understanding of their molecular basis. Indeed, until recently, these conditions were defined only by phenotypical features, the main ones being recurrent attacks of fever, abdominal pain, arthritis, and cutaneous signs, which sometimes overlap, obscuring diagnosis. The search for distinguishing signs such as periorbital edema in TRAPS, and the use of specific functional tests where available, are valuable. Needless to say, molecular screening of the causative genes has dramatically improved patient quality-of-life by providing early and accurate diagnosis, subsequently allowing for the appropriate treatment. Some patients, however, remain hard to manage despite the advent of new genetic tests, and/or due to the lack of effective treatment. The original clinical link between the aforementioned diseases can now be confirmed by a molecular one, following the exciting discovery that most of the altered proteins are related to the death domain fold (DDF) superfamily involved in inflammation and apoptosis. These molecules mediate the regulation of nuclear factor-kappa B (NF-kappa B) activation, cell apoptosis, and interleukin-1 beta secretion through cross-regulated and, sometimes, common signaling pathways. Knowledge of the defective step in autoinflammation has already led to the elucidation of the mechanisms of action of existing drugs and may allow the development of new therapies.


Subject(s)
Inflammation/diagnosis , Inflammation/genetics , Mutation/genetics , Genetic Testing , Genetic Therapy , Humans , Inflammation/metabolism , Inflammation/pathology , Inflammation/physiopathology , Inflammation/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...